Numerical atomic orbitals for linear-scaling calculations
نویسندگان
چکیده
منابع مشابه
Localized orbitals for molecular calculations
We present an overview of the existing localization algorithms which have been or are being used to perform quantum chemical molecular calculations that take into account electronic correlation effects. The natural distinction between intrinsic and extrinsic localization methods is explained and developed. The advantages and drawbacks of specific methods are discussed in terms of CPU time requi...
متن کاملNumerical solution of linear control systems using interpolation scaling functions
The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...
متن کاملLinear-scaling quantum Monte Carlo with non-orthogonal localized orbitals
We have reformulated the quantum Monte Carlo (QMC) technique so that a large part of the calculation scales linearly with the number of atoms. The reformulation is related to a recent alternative proposal for achieving linear-scaling QMC, based on maximally localized Wannier orbitals (MLWO), but has the advantage of greater simplicity. The technique we propose draws on methods recently develope...
متن کاملLinear-scaling quantum Monte Carlo calculations.
A method is presented for using truncated, maximally localized Wannier functions to introduce sparsity into the Slater determinant part of the trial wave function in quantum Monte Carlo calculations. When combined with an efficient numerical evaluation of these localized orbitals, the dominant cost in the calculation, namely, the evaluation of the Slater determinant, scales linearly with system...
متن کاملEvaluation of the electron momentum density of crystalline systems from ab initio linear combination of atomic orbitals calculations
Alternative techniques are presented for the evaluation of the electron momentum density (EMD) of crystalline systems from ab initio linear combination of atomic-orbitals calculations performed in the frame of one-electron self-consistent-field Hamiltonians. Their respective merits and drawbacks are analyzed with reference to two periodic systems with very different electronic features: the ful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2001
ISSN: 0163-1829,1095-3795
DOI: 10.1103/physrevb.64.235111